Picossecond–milliangström lattice dynamics measured by ultrafast X-ray diffraction

Christoph Rose-Petruck†, Ralph Jimenez*, Ting Guo*, Andrea Cavalleri†, Craig W. Siders, Ferenc Raški†, Jeff A. Squier®, Barry C. Walker†, Kent R. Wilson* & Christopher P. J. Barty‡

*Department of Chemistry and Biochemistry, ‡The Institute for Nonlinear Science, §Department of Electrical and Computer Engineering, The University of California, San Diego, La Jolla, California 92039–0339, USA

Fundamental processes on the molecular level, such as vibrations and rotations in single molecules, liquids or crystal lattices and the breaking and formation of chemical bonds, occur on time-scales of femtoseconds to picoseconds. The electronic changes associated with such processes can be monitored in a time-resolved manner by ultrafast optical spectroscopic techniques1, but the accompanying structural rearrangements have proved more difficult to observe. Time-resolved X-ray diffraction has the potential to probe fast, atomic-scale motions2–5. This is made possible by the generation of ultrashort X-ray pulses6–10, and several X-ray studies of fast dynamics have been reported11–15. Here we report the direct observation of coherent acoustic phonon propagation in crystalline gallium arsenide using a non-thermal, ultrafast-laser-driven plasma—a high-brightness, laboratory-scale source of subpicosecond X-ray pulses16–20. We are able to follow a 100-ps coherent acoustic pulse, generated through optical excitation of the crystal surface, as it propagates through the X-ray penetration depth. The time-resolved diffraction data are in excellent agreement with theoretical predictions for coherent phonon excitation21 in solids, demonstrating that it is possible to obtain quantitative information on atomic motions in bulk media during picosecond-scale lattice dynamics.

Crystalline gallium arsenide (GaAs) is available in large samples of very high crystalline quality, making it an ideal system for quantitative investigations using optical pumping and X-ray probing. Its physical parameters are known with great precision22, and numerous prior studies23 on its ultrafast electronic properties provide a solid foundation for interpretation, and for testing the potential of ultrafast X-ray diffraction. Indeed, some information on ultrafast lattice dynamics after optical excitation has already been indirectly inferred from a variety of linear and nonlinear optical techniques24–27. But owing to the short penetration depth of visible light, information on bulk dynamics in absorbing materials has not yet been obtained.

Figure 1 shows a schematic of our experiment. An ultrashort pulse of laser-generated Cu Ka X-rays (consisting of two closely spaced lines, Kα1 and Kα2) diffracts in a symmetric Bragg configuration from the 3.26-Å (111) lattice spacing in GaAs, penetrating ~2 μm into the bulk along the surface normal. A 30-fs pump pulse with variable time delay generates electron–hole pairs via interband excitation within the submicrometre penetration depth of the 800-nm light. By illuminating with light only a portion of the area probed by X-rays, we simultaneously observe the Kα lines from both photopumped and unperturbed areas of the semiconductor surface. Two-minute exposure X-ray-CCD images are normalized with respect to the incident X-ray flux and binned within the region of uniform illumination. In Fig. 2, the measured and calculated (described below) diffraction profiles are shown as a function of angular deviation from the Bragg angle, θ − θB, and of pump–probe time delay. Zero delay corresponds to the original Kα1 and Kα2 lines from both of the original Kα1 and Kα2 lines. Following excitation during absorption of the pump pulse, bandgap renormalization and state filling, not well characterized at these fluences, introduce additional nonlinearities to the excitation process. Also, efficient carrier diffusion at early times may smooth the energy deposition profile in a few picoseconds. After absorption, energy is transferred to the lattice via intraband relaxation22 and delayed Auger heating23. Existing estimates of the Auger coefficient24 in GaAs indicate that most of the energy is efficiently transferred to the lattice within a few picoseconds. X-ray diffraction, primarily sensitive to the acoustic phonon population, occurs only after the decay of the initially generated longitudinal optical phonons25. Following
our line of interpretation and the available parameters, we calculate a ~ 300-nm thermal energy deposition length, with a maximum surface temperature increase of ~ 300 K after 10 ps. Therefore, the efficient transfer of incident optical energy to lattice thermal energy can be considered complete after ~ 10 ps.

Subsequent lattice dynamics and related propagation effects are interpreted as proposed by Thomsen et al., who solved the elastic equations assuming impulsively generated thermal stress in an absorbing solid. Stress is relieved by lattice expansion that necessarily starts at the crystal surface, with Newton’s third law subsequently driving a travelling compression/expansion strain wave into the bulk at the longitudinal speed of sound ($v_L = 5,397$ m s$^{-1}$ in (111)-GaAs2). Hence, mechanical relaxation of an impulsively stressed lattice layer of thickness δ occurs within a time span of δv_L, which corresponds to ~ 300 ps for our X-ray probe depth. As both energy deposition and probing occur significantly faster than mechanical relaxation, this is a regime where the generation and observation of coherent lattice dynamics is possible. This contrasts with many prior experiments11, where laser heating is slower than mechanical relaxation and the strain is linearly proportional to the temperature. We note that for our experiment, a fully thermo-elastic treatment with coherent phonon excitation must be applied.

We numerically solve the thermo-elastic problem using the known parameters21 for GaAs, together with the calculated energy deposition depth and temperature rise (Fig. 3). Only three parameters are used in the model: the peak strain which is obtained directly from the data, the acoustic velocity which is known from the literature21, and the absorption length, ξ, which we estimate to be 300 nm. We systematically varied ξ within its uncertainty ($\pm 30\%$); 275 nm gave the best fit to the data. The calculated temperature increase corresponds to a maximum surface strain of $\sim 0.25\%$, or 8 mÅ of lattice expansion, after the stress is released, which is in good agreement with the experimental 150-arcsec deviation seen near zero delay in Fig. 2a. However, our data cannot exclude additional non-thermal strain generation20 from the hot, dense electron–hole plasma at early times. A 100-ps acoustic pulse propagates into the crystal at v_L and has peak bipolar strain of approximately $\pm 0.12\%$, or ± 3 mÅ. The theoretical time-resolved diffraction curves of Fig. 2b, corresponding to the strain profile in Fig. 3, were calculated using standard Takagi–Taupin27–29 techniques and convolved with the spectral and spatial distributions of our X-ray source. They are in good agreement with the experimental data of Fig. 2a. Inclusion of thermal diffusion20 into the elastic equations effected higher-order dispersive strain behaviour, but, to within our experimental resolution, produces insignificant changes to the calculated diffraction profiles.

$$
\begin{align*}
\text{Optical pump} & \quad (10 \text{ mJ, 30 fs}) \\
\text{Moving Cu wire} & \quad \text{Cu K} \alpha_1 \\
\text{Plasma generation} & \quad (50 \text{ mJ, 30 fs}) \\
\end{align*}
$$

Figure 1 Diagram of the table-top ultrafast X-ray diffractometer. The 800-nm laser pulses are generated at 20 Hz by an ultrafast Ti:sapphire laser producing 30-fs pulses of 200-mJ energy31. The output of the laser is used for both sample excitation and X-ray generation. The latter is done by focusing 30-fs, 50-mJ, laser pulses onto a moving Cu wire in vacuum, resulting in a source with measured diameter of $\sim 25\mu$m. With an average laser power of 1.0 W, $\sim 5 \times 10^{10}$ Cu Kα photons (4 sr s$^{-1}$) are produced. The emitted Kα radiation—which consists of two closely spaced, Kα_1 (1.5407 Å) and Kα_2 (1.5439 Å), lines—is diffracted from the optically pumped GaAs and detected by an X-ray CCD camera, with a data acquisition time of two minutes per delay step. We excite the GaAs crystal with ~ 30-fs pulses at a fluence of 59 mJ cm$^{-2}$. The flat-top pump beam size is set to ~ 4 mm2 ($\pm 5\%$ of peak) so that it includes the sample area encompassing the Bragg angles of the two Kα lines and the auxiliary lines. The crystal is continuously moved during the experiment in order to minimize the effects of cumulative damage by the optical pump pulse.

Figure 2 Experimentally measured (a), theoretically calculated (b), and iteratively inverted (c) time- and angle-resolved diffraction curves for optically excited GaAs. The horizontal axis is angular deviation from the Kα_1 Bragg angle calculated assuming unit refractive index. Vertical axis is pump–probe time delay, with the zero of delay being chosen to coincide with the initial deviation of the lines from their unpumped appearance. For c, the iterative genetic-algorithm inversion procedure varied the depth-dependent strain, defined by a 200-nm-spaced, cubic-spline-interpolated grid, and calculated the corresponding diffraction patterns until a good fit was achieved. Five inversions with different parameters of the genetic algorithm, such as random number seed, population size, crossover probability, and mutation rate, were performed and subsequently averaged.

θ—θ_B (arcsec)

a b c
Comparing Figs 2a, b and 3, we see that the initially thin but highly strained layer of the surface lattice expansion produces the broad, low-intensity lines at early time delays. As the strain wave propagates away from the surface, the layer of surface expansion thickens and these lines correspondingly become narrower and more intense, but diffract at smaller angular deviations due to the weaker average intensity lines at early time delays. As the strain wave propagates into the bulk, and shifted slightly to lower angles due to the exponential surface strain of the relaxed lattice. The strain for these late times is simply proportional to the temperature distribution.

Finally, the theoretical angle-integrated diffraction signal similarly reproduces the monotonic increase and plateau behaviour seen in the experimental data.

Additionally, we performed an iterative genetic-algorithm inversion, obtaining the strain from the measured data. The angle- and time-resolved diffraction curves corresponding to the retrieved strain are shown in Fig. 2c. Spectral and geometrical broadening of the diffraction lines significantly limits the uniqueness of the result. Nevertheless, we obtain qualitatively similar strain behaviour to that shown in Fig. 3. We retrieve an exponential surface strain, with 8-mÅ peak strain, and a unipolar, 3-mÅ strain pulse which propagates into the bulk at several thousand metres per second. Although the physical model that we used is fully consistent with the measured data (to within our experimental resolution), the spectral and geometrical broadening mentioned above mean that it is not a unique interpretation of that data.

This work, using a table-top laboratory apparatus, demonstrates with a simple crystalline material the direct observation of milliÅngström atomic motion on the picosecond timescale. Further developments of the technique should permit direct observation by ultrafast X-ray diffraction of the ultrafast atomic motions accompanying a wide variety of physical, chemical, and perhaps biological processes.