Detection of Nonthermal Melting by Ultrafast X-ray Diffraction

C. W. Siders, 1 A. Cavalleri, 3 K. Sokolowski-Tinten, 4 Cs. Tóth, 2 T. Guo, 4† M. Kammler, 5 M. Horn von Hoegen, 6* K. R. Wilson, 7 D. von der Linde, 6 C. P. J. Barty 3

Using ultrafast, time-resolved, 1.54 angstrom x-ray diffraction, thermal and ultrafast nonthermal melting of germanium, involving passage through nonequilibrium extreme states of matter, was observed. Such ultrafast, optical-pump, x-ray diffraction probe measurements provide a way to study many other transient processes in physics, chemistry, and biology, including direct observation of the atomic motion by which many solid-state processes and chemical and biochemical reactions take place.

Many fundamental processes in nature, such as chemical and biochemical reactions and phase transitions, involve changes in the structure of matter: rearrangement of the constituent atoms and molecules. Such changes usually occur transiently on time scales that are comparable with the natural oscillation periods of atoms and molecules; that is, femtoseconds to picoseconds. Ultrashort-pulse visible lasers with such pulse widths have been used for more than two decades to optically pump and dynamically probe a wide array of atomic, molecular, solid-state, and plasma systems, including extreme states of matter normally found only in stellar or planetary interiors and experimentally accessible only by the rapid heating and inertial confinement made possible with ultrashort-pulse irradiation (1, 2). In these experiments, however, the visible light used to probe the ensuing dynamics inherently cannot resolve atomic-scale features, and it interacts predominately with valence and free electrons and not with the deeper lying core electrons

1Department of Chemistry and Biochemistry. 2Institute for Nonlinear Science. 3Department of Applied Mechanical/Engineering Sciences, University of California, San Diego, La Jolla, CA 92093–0339, USA. 4Institut für Laser- und Plasmaphysik, Universität Essen, D-45117 Essen, Germany. 5Institut für Halbleitertechnologie. 6Institut für Festkörperphysik, Universität Hannover, D-30167 Hannover, Germany.

†To whom correspondence should be addressed. E-mail: csiders@ucsd.edu

Projects Agency. We acknowledge the use of facilities at the Center for High Resolution Electron Microscopy at Arizona State University. M.R.S. and S.S.P.P. thank P. Troullida of the IBM T.J. Watson Research Center for discussions that contributed substantially to this work, and we thank J. Speidell for supplying silicon nitride membranes.

19 july 1999; accepted 5 October 1999
resolved with bulk Ge, approximately 100 arcsec apart, with linewidth-limited resolution. With the 160-nm films, we measured the linewidth-convolved rocking curve of the thin film and did not resolve the individual K_{11} and K_{12} lines. To reach a sufficiently high signal-to-noise ratio, photon counting for 200 laser shots was required. Given this, our pumped area, and the total area of our samples, we were limited to measuring only nine delay points and could not exhaustively acquire data on the subpicosecond time scale.

We set the zero time delay with ±1-ps accuracy by measuring strain generation in a reversible configuration (7) at approximately one-10th the melting fluence and determining the latest time delay at which no appreciable strain was discernible. The diffraction image taken at a delay of +6.7 ps (Fig. 1B) shows an area of reduced diffraction, indicating disordering in the center of the pumped spot. At later time delays (Fig. 1C), the area widened over which the reduced diffraction (and hence disordering) took place. A slower disordering process was observed in the outer areas of the pumped spot, where the fluence was closer to the melting threshold. The image taken at a delay of +107 ps (Fig. 1D) shows a broad disordered area, as well as a shift of the reduced-intensity Bragg line, in the pumped region, toward lower diffraction angles, which suggests that the solid Ge layer beneath the melt was strained by thermal expansion (7, 23). Finally, a nonrastered diffraction image (Fig. 1E) taken several seconds after irradiation on a vertical sequence of single-shot damage spots shows nearly complete recovery of the diffraction signal on a semi-infinite time scale.

In the plot of the integrated diffraction from the center (solid line) and edge (dashed line) of the pumped spot as a function of visible-pump x-ray probe delay (Fig. 2), the signal from the central region shows a sharp drop of ~20% within the first 7 ps, limited by the time delay between measurement steps, whereas the edge region retains the reflectivity of the unpumped crystal. A slower decay in integrated diffraction is seen in parallel in both regions on a longer time scale, and a drop in integrated diffraction of ~50% in the central region (~20% on the edge) is observed at a delay of 40 ps. At 107 ps delay, an increase in the diffraction signal is seen, possibly due to the fact that the expanded solid Ge has higher integrated diffraction efficiency than the unstrained crystal (7). At an infinite time delay, the diffraction signal recovers, for both regions, to ~90% of the initial value, showing that (111) crystalline order in the molten region is reestablished on the long time scale, with the incomplete return most likely due to partial ablation at the surface, where the fluence is high enough to generate a superheated liquid (24), or possibly to amorphous recrystallization of the molten Ge (25). This clearly rules out the possibility of a solid-gas or solid-plasma phase transition and demonstrates that we are observing a solid-to-liquid phase transition, followed by recrystallization.

Because the observed reduction in integrated diffraction efficiency in the central part of the pumped region is significantly greater than that expected from the Debye-Waller reduction for a highly superheated solid [for example, a 10% reduction for Ge(111) at 2000 K at 1.54 Å], we must conclude that a thin layer of the film loses crystalline order within a few picoseconds. Because the integrated x-ray reflectivity scales with the film thickness, approximately 20%, or 35 nm, of the 160-nm film must be disordered. Conventional thermal melting after rapid heating cannot account for this; even if we assume that the lattice instantaneously reaches the melting temperature, a supersonic melt front velocity of ~10⁴ m/s would be required, exceeding the expected liquid-solid interface velocity by an order of magnitude (15, 26) and exceeding the highest possible value by about a factor of 3. In addition, a delay of a few picoseconds for the lattice temperature to reach the melting temperature at the surface is expected because of screening of Auger recombination at the high carrier densities (6 × 10²² cm⁻³, corresponding on average to more than one of the four valence electrons available from each Ge atom in the crystal) that are present immediately after absorption of our 0.5-J/cm², 100-fs, 800-nm laser pulse (12, 15). Therefore, we must conclude that the Ge rapidly and homogeneously melts through a nonthermal disassembling process in the first few picoseconds after energy deposition. Indeed, an estimate of the carrier density distribution after absorption of the pump suggests that the excited carrier density exceeds the theoretically calculated lattice stability limit of 10²² cm⁻³ (27) over a depth of approximately 30 to 40 nm, which is in good agreement with our measured ~35-nm disordered depth.

At later times, one observes in the integrated diffraction signal a slower disordering process taking place at the same rate in the transverse edges of the illuminated region as well as deeper within the central pumped region. In these regions of the crystal, the absorbed energy is close to the melting threshold, and the disordering can evolve inhomogeneously along the thermal pathway described above (20). Similar behavior has been observed optically at the surface of GaAs under comparable laser absorption conditions (20) (2-eV radiation, 1.5-eV band-gap, and 250-nm penetration depth; conditions used here were as follows: 1.5-eV radiation, 0.8-eV direct band-gap, and 200-nm penetration depth). The slow drop at long times in the integrated diffraction efficiency (Fig. 2) suggests that thermal melting also occurs in the solid beneath the nonthermally molten surface layer. The observed reductions in both regions correspond to an average solid-liquid interface velocity of ~700 m/s at these later delay times, which is not unreasonable for thermal melting under highly superheated conditions (26).
These results demonstrate the ability of present-day ultrashort-laser–driven x-ray sources to study transiently generated extreme states of matter. Although further studies of important outstanding problems related to the structure of superheated solids and transient liquid phases (1, 2) are natural extensions of this work, foreseeable improvements already in development in tabletop laser–driven plasma sources should expand the scope of ultrafast x-ray diffraction to the dynamic study of many other ultrafast processes in physics, chemistry, and biology, including the ultrafast atomic and molecular dynamics by which other solid-state processes and chemical and biochemical reactions take place.

References and Notes
22. Our experimental setup, discussed previously in (7), consisted of a visible-pump x-ray probe apparatus, with 3.8-Å pulses (FWHM) and a parallel laser line. Both of those were transverse to the x-ray beam. In contrast, the x-ray pulse was generated by focusing a 30-fs pulse from a miterwatt laser (28) at relativistic intensities onto an overdense copper wire. X-ray pulses were generated by the photoexcited-Ge crystal in a symmetric Bragg configuration and were recorded with a photon-counting area detector. The optical pump pulse was split off from the x-ray–generating laser pulse, was independently adjustable in both energy and pulse-width. Focused onto the sample with a cylindrical lens, the pump pulse illuminated a 0.04-mm 2 area of the crystal that was sufficiently larger in the angular (that is, horizontal) direction than the area probed by the x-rays. Using a silicon wafer target, the pump fluence was first empirically set to the melting fluence of silicon, as evidenced by post-irradiation examination (29), and then increased to 0.5 J/cm 2, which is more than twice the known melting threshold for Ge. To avoid plasma formation in air or at the surface of the sample, the pump pulse-duration was increased to 100 fs, where no effects of plasma formation were observed.
25. Postmortem examination with interference micrographs did indicate crater formation, with an estimated upper limit of a crater depth of 15 nm. As expected from optical measurements (24), the crater diameter was significantly smaller than the transiently disordered area. Amorphous rings (29), which were observed with bulk silicon samples used to set the incident fluence, were not visible on the Ge films.
30. K.S.T. gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft.
15 July 1999; accepted 23 September 1999

Cretaceous Sauropods from the Sahara and the Uneven Rate of Skeletal Evolution Among Dinosaurs

Paul C. Sereno,1* Allison L. Beck,1 Didier B. Dutheil,2 Hans C. E. Larsson,3 Gabrielle H. Lyon,4 Bourahima Moussa,4 Rudyard W. Sadleir,5 Christian A. Sidor,6 David J. Varricchio,6 Gregory P. Wilson,7 Jeffrey A. Wilson8

Lower Cretaceous fossils from central Niger document the succession of sauropod dinosaurs on Africa as it drifted into geographic isolation. A new broad-toothed genus of Neocomian age (~135 million years ago) shows few of the specializations of other Cretaceous sauropods. A new small-bodied sauropod of Aptian-Albian age (~110 million years ago), in contrast, reveals the highly modified cranial form of rebbachisaurid diplodocoids. Rates of skeletal change in sauropods and other major groups of dinosaurs are estimated quantitatively and shown to be highly variable.

1Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57 Street, Chicago, IL 60637, USA.
3Project Exploration, 5521 MT 59717, USA.7University of California, Museum of Paleontology, 1101 Valley Life Sciences Building, Berkeley, CA 94720, USA.4Museum of Paleontology, University of Michigan, 1109 Geddes Road, Ann Arbor, MI 48109, USA.

*To whom correspondence should be addressed. Successive authors are listed alphabetically.

Cretaceous Period

Cretaceous Period